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i. It is known that the absolute viscosity of fluids ~ depends to a significant extent 
on temperature (the greater T, the lower ~), while other parameters change little with tem- 
perature. 

The exponential relation below [i] is usually used for very viscous fluids (such as 
glycerin) 

= ~0 exp {--~(T - r0)} (i. i) 

(D0, ~, and T o are empirical constants). For ordinary fluids (such as water), the curve 
of the dependence of viscosity on temperature is more shallow and can in many cases be des- 
cribed by the power function [2] 

= ~o(TJT) m, m ~ O. ( 1 . 2 )  

in certain temperature ranges and with the appropriate values of the exponent m, Eq. (1.2) 
is a good approximation of the well-known function of J. I. Frenkel [3]. 

It should be noted that the studies [4-6] examined nonisothermal rectilinear flows 
in pipes with allowance for dissipative heating and the temperature dependence of viscosity. 
In these problems, there was no convective heat transfer or temperature gradient along the 
walls. The authors of [7, 8] studied certain hydrodynamic problems with a temperature gra- 
dient along the pipe wall, when convection plays an important role. Here, it was assumed 
that viscosity depended exponentially on temperature. 

In the present study, we generalize the results from [7, 8] in several directions: 
first, we examine both Eqs. (i.I) and (1.2); secondly, we study non-Newtonian fluids whose 
apparent viscosity depends arbitrarily on the quadratic invariant of the strain-rate tensor; 
thirdly, we examine a model problem of nonisothermal flow in a porous medium to analyze 
the stability of the steady-state solution we obtain. 

2. Movement of Fluid in a Porous Medium. The simplest model of the slow nonisothermal 
flow of an incompressible fluid in a homogeneous porous medium is described by the equation 

k v = -- ~ Vp, v = (v~, v, ,  v~); 

d i v v  ---- O; 

OT/Ot + ( v v ) T  = •  

( 2 . 1 )  

( 2 . 2 )  

( 2 . 3 )  

where v l, v 2, and v 3 are the components of fluid velocity in a Cartesian coordinate system 
x, y, z; p is pressure; ~ is thermal diffusivity; k is the permeability of the soil; t is 
time. 

The nonsteady terms have been omitted from Eqs. (2.1). This approximation is valid 
for most real systems [9, I0]. 

We will examine a rectilinear 

v I = O, v s = O, v 8 = w(t, x, y) (2.4) 

flow in a pipe whose wall is kept at a temperature that changes exponentially with the longi- 
tudinal coordinate z: 

TIs = r0e ~ (2.5) 
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(S is the contour of the cross section of the pipe). Assuming that viscosity depends exponen- 
tially on temperature (1.2) and allowing for (2.4)-(2.5), we seek particular solutions of 
system (2.1)-(2.3) in the form 

- -  _ _  d p  p ,  

T = Toe-X~/, w = k p. / n ,  d'--z = h e~'~" ( 2 . 6 )  P"o h 

Here, h is the characteristic dimension of the cross section of the pipe; p, is a constant 
chosen as the pressure scale. Inserting Eqs. (2.6) into (2.3) and (2,5) [Eqs. (2.1)-(2.2) 
are satisfied automatically by virtue of (2.4), (2.6)], we obtain the equation and boundary 
condition for the unknown function f: 

0//0~ = 021/0~ ~ + 02]/0~ ~ + A2I -5 P/'~+~; 

]Is  = i 

(~ = •  2, ~ = x/h ,  ~l = y/h,  A = ~,h, P = kkhp , / (~o•  

(2.7) 
(2.8) 

We will study a flow in a plane channel of the width 2h (-h ~ x ~ h). The flow is sym- 
metrical relative to the midline x = 0. In this case, 82/8~ 2 = 0 and it is sufficient to 
examine the region 0 ~ ~ ~ i. Considering the foregoing, we findfrom (2.7)-(2.8) that 

O/m~ = 02f/O~ 2 q- AV + Pfm+~; ( 2 . 9 )  
= o: o//o  = o; = i :  I = 1. ( 2 .  l O )  

The steady motion of the flow is described by an ordinary differential equation and 
boundary conditions 

+ + P l  = o, (o) = o, 7 ( I )  = I .  ( 2 . 1 1  ) 

The exact solution of problem (2.11) can be written in implicit form 

1U o 
where f0 = f(0) is the temperature on the axis of the channel. This temperature is deter- 
mined from the solution of the transcendental equation 

2P u~)] -*l~ du = [~---+-~.~(l--u ~+') + " ( I - -  , 1. (2.13) 
11to 

It follows from the second relation of (2.6) that f0 depends exponentially on the maximum 
flow velocity: f0 ~ [w(0)] I/m- 

At m = 2, Eq. (2.12) can be written in terms of elliptic integrals in the form: 

F(~o, /o/C) - -  F(T ,  g/c)  = c(PI2) l l~( l - -~) .  

Here, cos ~0 = I/f0; cos ~ = l/f; c = ~i + f02 + 2A2p-~; F is an incomplete elliptic integral 
of the first kind [II]. With assigned P and A, we find the parameter f0 = f0( P, A) from 
the transcendental equation F(~0 , f0/c) = c(P/2) I/2. 

Fixing the parameter A ~ 0, we will examine qualitative features of the dependence of 
temperature on the axis of the channelf 0 on the dimensionless pressure P. It follows from 
Eq. (2.13) that f0 ~ 1 corresponds to P + 0. On the other hand, P + 0 at f0 ~ m as well. 
Thus, there exists a value Pmax such that nonlinear boundary-value problem (2.11) has no so- 
lution at P > Pmax, while at 0 < P < Pmax each P e (0, Pmax) corresponds to two solutions 
with different temperatures on the channel axis. On one branch of the solution, dP/df 0 < 0 
(the pressure gradient decreases with an increase in flow velocity), while dP/df 0 > 0 on 
the other branch (the pressure gradient increases with fluid velocity). Figure i shows 
the relation P(f0) at A = 0, which corresponds to the assumption that axial heas163 
is small compared to convective heat transfer (here and in Figs. 2 and 3, the dashed line 
corresponds to unstable regimes). 
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~ 2 ~  ~ . . . . . .  

Fig. I 

We will show that the steady-state solution is unstable at dP/df 0 < O. Let f = f + e 
(f is the steady-state solution of (2.11), while ~ = e(T, ~) are the perturbed solutions). 
At small e, we obtain the following if we linearize (2.9) in the neighborhood of the steady- 
state solution 

(2.14) 

We seek the solution of Eq. (2.14) in the form 

= ~ (~) e ~ (2.1s) 

Inserting (2.15) into (2.14) With allowance for (2.10), we have the following spectral prob- 
!em to determine the exponent ~n 

o~[t + [<m + t)  P / ~  + A 2 - -  1~,~] co = O, co{(O) = O, co (~) = O. ( 2 . 1 6 )  

The spectral properties of Eq. (2.16) are well known [12, 13]. There is a discrete spectrum 
of eigenvalues; here, the eigenfunction corresponding to the lowest eigenvalue $0 does not 
change sign on the interval (0, i). 

Differentiating Eq. (2.11) with respect to f0 and designating ~ = d~/df 0, we write 

~ + A~ = - (~ + I) P~ ~e ?~+~ (2.17) 

We multiply Eq. (2.17) by the sign-constant eigenfunction ~0 of problem (2.16). We then 
integrate the resulting expression over E from 0 to 1 with allowance for the equalities 

tt # i # ~, ~, �9 t 

As a result, we arrive at the relation 

1 I 

(2. 18 ) 
dl o 

0 0 

In deriving (2.18), we used the boundary conditions for the function ~ (2.16) and the func- 
tion ~: ~' (0) = 0, ~(i) = 0. 

Since the sign of ~0 r~nains constant at 0 ~ ~ ~ i, ~ e 0, and ~ ~ 0 (the temperature 
of the fluid increases with an increase in the temperature on the channel axis), then the 
sign of 80 is opposite the sign of the derivative dP/df 0. Thus, when dP/df 0 < 0, we have 
~0 > 0, i.e., the corresponding solution is unstable. This is what we had to prove. At 
dP/df o > 0, ~0 < 0, and the steady-state solution is stable against small perturbations. 

We will similarly examine a more general case, when the permeability of the ground 
depends on pressure k = k(p, IVpI). We seek the particular solution for temperature T in 
the form (2.6), while the equation for the function f will again be (2.7). It should be 
noted that the authors of [8] studied steady nonisothermal motion in a porous medium for 
a linear change in wall temperature with an exponential temperature dependence of viscosity. 

3. Non-Newtonian Fluid. We will study nonisothermal flows of non-Newtonian fluids 
whose properties are described by the theological equation 

Tij : - -P~ i j  + Feij, e i j :  Ovi/Ozj+Ov/Ox~, (3.1) 

where ~ij are components of the tensor of the viscous stresses (i, j = i, 2, 3); ~'z~ is the 
Kronecker symbol; eij are components of the strain-rate tensor; v~u, v 2~v, vs are 
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components of the velocity of the fluid in the Cartesian coordinate system x1~x, x 2 ~y, 
xa~z. We assume that F in (3.1) has the following structure: 

F = ~(T)I(I~). ( 3 . 2 )  

Here, f is an arbitrary function of the second (quadratic) invariant of the strain-rate 
tensor 

2 aw,~ . av~ ~ ow~ 2 , [au +aw'~ ~ {cub ~ 2tov]2 ou ---- - i -~)  a~J -i-laT a~)" (3.3) 

In particular, for the power-law fluid in (3.2) we need to put f(I 2) : 12(n-1)/z (the value 
n = I corresponds to a Newtonian fluid); the Ellis model is characterized by the relation 

f(l 2) = A + BI2(n-1)/~, where A, B = const [14]. 

As before, we assume that the analog of viscosity - the consistency of the medium B - 
is an exponential or power function of temperature. 

Steady nonisothermal flows of non-Newtonian incompressible fluids which obey theological 
law (3.1)-(3.2) are described by the equations 

a,j op a { F ~  OF o~. . t  + o ,a j' (3.4) 

divv ----0, v -----(v 1, us, v3); (3 .5 )  

(vv)T ---- ,AT. (3 .6 )  

Here, we perform summation over the repeating subscript i; p is the density of the fluid. 
We seek the particular solutions of system (3.4)-(3.6) in the form 

v.  = O, v~ = O, v3 = w(x) ,  p = p ( z ,  ~), T = T(x,  z), ( 3 . 7 )  

which corresponds  to  r e c t i l i n e a r  f low in a p lane  channel .  Then the  i n e r t i a l  terms in the  
l e f t  s i de  of  equa t ions  of  motion (3 .4 )  a re  i d e n t i c a l l y  ze ro ,  whi le  the  c o n t i n u i t y  equa t ion  
(3 .5 )  i s  s a t i s f i e d  a u t o m a t i c a l l y .  Cons ider ing  t h i s  and us ing  the  n o t a t i o n  w x '  = dw/dx, we 
find from (3.4)-(3.6) that 

Op/Ox = wx'aF/Oz; ( 3 . 8 )  

Op/Oz = (a/ax) (Fw~'); ( 3 . 9 )  

w(x)or/Oz = • 2 + O~T/Oz2). (3 .10)  

Using c ross  d i f f e r e n t i a t i o n  to  exc lude  p r e s s u r e  from ( 3 . 8 ~ - ( 3 . 9 ) ,  we ob ta in  

(02/Oz ~ - -  O2/Ox2)(Fwx ') = O. 

The gene ra l  s o l u t i o n  of  Eq. (3 .11)  i s  w r i t t e n  as 

Fw~' = ~(z  -k x) Jr ~ ( z  --  x) (3 .12)  

(~ and ~ a re  a r b i t r a r y  f u n c t i o n s ) .  

I t  f o l l ows  from Eqs. ( 3 . 2 ) - ( 3 . 3 )  and (3 .7)  t h a t  Y = B(T)f(Wx'2) .  Cons ider ing  t h i s ,  we 
put  r = -Aea~, ~(~)  = Bea~ in Eq. (3 .12)  (A, B, and a a re  a r b i t r a r y  c o n s t a n t s ) .  As a 
result, we obtain the following equations for the velocityand temperature of the fluid 

~ ( r ) ]  (w;') w; = e= (-- Ae = + Be -~ ) ;  (3 .13)  

w(x)OT/Oz = • 2 + 02T/Oz2). (3 .14)  

We will need to use these equations later. 

4. Exact Solutions for an Exponential Temperature Dependence of the Consistency of 
the Medium. Let the consistency of the medium ~ decrease exponentially with temperature 
in accordance with the law (I.I). We seek the particular solution of Eqs. (3.13)-(3.14) in 
the form 

(3.11) 
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--a0 w = w ( x ) , T = T  o---~z+13:r  (x), (4 1) 

which leads us to a system for the unknown functions w and 8: 

/(w:2) w~=-~oex p 0 [--Aexp(~x)+ Bexp(--ax)]; (4 .2)  

w= --O: x. (4.3) 
Equations (4.2) and (4.3) were derived in [7] for a Newtonian fluid, which corresponds to 
f~l. 

Excluding w from (4.2) and (4.3), we obtain a third-order nonlinear differential equa- 
tion for the temperature component e: 

0 ~ 2 '- i 0) B e x p ( - - a x ) ] ,  (4 4) 1(1 =~1 )0~= = ~exp (~ [A exp(ax)-- 

For a power-law fluid, corresponding to f(Wx'2) = lWx'l n-l, we write Eq. (4.4) as follow~ 
at w x' ~ 0 after performing some elementary transformations 

'~ (aO) [ '~o~ B exp(--ax)] 1/n �9 (4.5) O~x = exp exp(az)--~o 

When n = i, it can be shown by direct proof that the function 

0 • In ~2~~ 
='~ (AeaX+Be_=X)S ( 4 . 6 )  

is the exact (particular) solution of Eq. (4.5). 

Now let us show that for any value of n, Eq. (4.5), with A = 0, B # 0 or A # 0, B = 0, 
can be reduced to the Blausius equation. The latter describes the hydrodynamic boundary 
layer on a flat plate. 

In fact, at A ~ 0, B = 0 (the case A = 0, B # 0 is examined in a similar manner), if 
we make the substitution 

=~n0 + ~x (4.7) 

we reduce Eq. (4.5) to an equation which is not explicitly dependent on x: 

~xxx=--ae r ~n~o] " 

We make the following substitution in (4.8) 

(4.8) 

As a result 

gxx = ae ~. 

If! 

Now differentiating both sides of this equation with respect to x, we have gxxx 

(4.9) 

(4.10) 

= ae~Sx'. 

Excluding the function ~x' and e~ from here by means of (4.9) and (4.10), we derive an 
equation for g: 

pn 

g=~+ gg~ = 0 (4.11) 

This equation is often encountered in the theory of hydrodynamic boundary layers [15] and, 
as (4.7), reduces to a first-order equation. It was established in [16] that there may 
be more than one solution of (4.11) (and, thus, of the initial equation (4.5)) for certain 
boundary conditions. Having the particular solution of Eq. (4.11), we can find the particu- 
lar solution (4.8) at A # 0, B = 0 from the formula 

0 = - j  \ a /  
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this solution being a consequence of Eqs. (4.7) and (4.10). For example, (4.11) permits 
the solution g = 3(x + C) "I (C being an arbitrary constant). With allowance for this, we 
can use (4.12) to find the particular solution of Eq. (4.5) at B ffi O: 

•  6 ] 0 =W ~ ( z +  c) 3 xx. 

We will use g = g(B)(x) to denote the Blausius solution satisfying Eq. (4.Ii) and the 
boundary conditions g(0) = gx'(0) = 0, gx'(~) = i. This solution was tabulated in [15] 
for example. Using the group property of (4.11), it is easily shown that the two-parameter 
family of f~inctions g = Ag(B)(% x + o) (where ~ and o are arbitrary constants) is the solution 
of (4.11). Inserting this relation into (4.12), we obtain a four-parameter family of solu- 
tions for the temperature profile. 

5. Exact Solutions for a Power Dependence on the Consistency of the Medium on Tempera- 
ture. Now let us examine a power law for the change in the consistency of the medium in 
relation to temperature (1.2). We seek particular solutions of Eqs. (3.13)-(3.14) in the 
form 

w = w(x ) ,  T = T o e ~ Z / ~ ( x ) .  ( 5 . 1 )  

As a result, to determine the functions w and ~ we have the system: 

-~ w, ~ , = _ Ae ~x [lo~ ]( x )12x + Be-~ 

It follows from Eq. (5.3) that 

(5.2) 

(5.3) 

t Mini PP I \ t  

w~ = -- ~ ~/~)x. (5 .4)  

Excluding the derivative w x' from (5.2), we can use (5.4) to derive a third-order equation 
for ~. For a Newtonian fluid, corresponding to f~l, this equation is written in the form 

" ' ~ m (AeaX __ Be-~x). (~=~I~)~=~--RV~ (5.5) 

It can be shown by direct proof that Eq. (5.5) has the particular solution 

= ? ( A e ~ - } - B e - = ~ ) - 8 / ~ ' ?  = [ 2 4 A B u ~ • 1 7 6  ( 5 . 6 )  

For  a power - l aw f l u i d ,  we o b t a i n  t h e  f o l l o w i n g  f rom ( 5 . 2 ) ,  ( 5 . 4 )  a t  w x '  ~ 0 

Now let us examine the flow in a narrow channel, which corresponds to ~x << I. 
(5,7) takes the form 

( 5 . 7 )  

At A = B, 

( 5 . 8 )  

and permits the particular solution 

[ ~ ]nl<n--~) 3n+I C = [ ~ j  q~ = C x'~, v = - - ~ - ,  

At A ~ B, we obtain the following from (5.7) for ax << 1 

, ,  , ~ ( A - - B ~ I , -  
( ' ~ x / , p ) ~  = ~ ' W " ,  ~ = ~ ~ ~~ / 

Changing over to the new variables 

s cp ~, u = (cpx)  , 

(5.9) 

( 5 .  I 0 )  
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we reduce the order of Eq. (5.9). As a result, we arrive at the Emden-Fowler equation 

Uss ''= (i/2)iAs(m-n)12nu-i/2. This equation is integrated in quadratures, for example, at 
n = m and m = 3n [i7]. 

6. Certain Problems on Nonisothermal Flows in Plane Channels. Using the equations 
derived in Parts 4 and 5, we now formulate specific probl~ms on nonisothermal flows in plane 
channels of the width 2h (-h ~ x ~ +h). For flows that are s}~muetrical with respect to the 
channel axis, when we allow for the condition of adhesion of the fluid to the wall we have 
three boundary conditions: 

x = O, Ow/Ox = 0; x = O, OT/Ox = 0; x = h ,  w = 0. ( 6 . 1 )  

We also assume that the flow rate of the liquid q is given. The quantity Q is integrally 
related to w: 

h 
Q = 2 ~ w ( x )  dx.  ( 6 , 2 )  

o 

By having the transverse coordinate x approach zero in (3.13) and using the first condition 
of (6oi), we obtain the relationship between the coefficients A and B: 

A = B. ( 6 . 3 )  

Case I. Let the temperature on the wall of the channel decrease linearly with the 
coordinate z by the law 

x = h,  T = T o - - E z ,  ( 6 . 4 )  

while the consistency of the medium depends exponentially on temperature (i.i) (E is the 
temperature gradient along the walls). 

We seek the velocity and temperature of the fluid in the form (4.1) at a = BE, where 
w and 8 satisfy system (4.2)-(4.3). Using boundary conditions (6.1), (6.4) and Eq. (6.3), 
after we exclude w we arrive at the following problem to determine the function 8: 

/ ( I  0 ~ l ' )  0~= = K e x p  0 sh (~Ex); ( 6 . 5 )  

x =  O,O' = = = O" ~ = 0 ;  x h, 8 O; x h, ~ = 0 .  ( 6 . 6 )  

Here, the second condition of (6.6) is obtained by comparing (6.4) with Eqs. (4.1) at x = 
h. Boundary condition (6.4) is obtained by passing to the limit x + h in Eq. (4.3) with 
allowance for the condition of adhesion to the channel wall (6.1). 

Equation (6.5) contains the unknown parameter A, which must be calculated in the follow- 
ing manner. We insert Eq. (6.2) into the right side. In accordance with (4.3), w = -Sxx". 
After integrating, with allowance for the first boundary condition (6.5) we have 

Q = --20~'(h). ( 6 . 7 )  

This relation connects the sought parameter A with the specified flow rate Q. Having 
assigned A arbitrarily in (6.5) and having solved problem (6.5)-(6.6), we find Q from (6.7) 
as a function of A. Inverting this relation, we obtain A = A(Q). 

For a Newtonian fluid (f--=[), it follows from the results in [18] that problem (6.5)- 
(6.7) has two solutions for certain 0 < A < Ama x and no solutions for A > Ama x. The relation 
A(Q) at 8Eh + 0 (flow in a narrow channel) is shown in Fig. 2. The Poiseuille flow analog 
is obtained by passing to the limit a + 0 in (4.1)-(4.3), where it is necessary to put A = 
B = C/a, C = const. 

Case 2. Now let the temperature on the channel walls decrease exponentially with the 
coordinate z by the law 

x = h, T = Toe -~, ( 6 . 8 )  

t h e  t e m p e r a t u r e  d e p e n d e n c e  o f  c o n s i s t e n c y  o b e y i n g  power  law ( 1 . 2 ) .  We s e e k  t h e  s o l u t i o n  
in  t he  fo rm ( 5 . 1 )  w i t h a = m ~ ,  w h e r e t h e f u n c t i o n s w a n d ~ a r e d e t e r m i n e d  f r o m E q s .  ( 5 . 2 ) - ( 5 . 3 ) .  
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Fig. 2 Fig. 3 

Using boundary conditions (6.1), (6.8) and Eq. (6.3) and excluding w in the case of a power- 
law fluid, we obtain the problem for determining ~: 

( ~ ) '  ~ [ 2A ,1/n m/n 
x = ~ (~o) + [sh (s (6 .9)  

t n �9 
x = O ,  ~ = 0 ;  x = h ,  ~ = 1 ;  x = h ,  r  (6 10) 

Here, the second boundary condition is found by comparing (6.8) with Eqs. (5.1) at x = h. 
The third condition of (6.10) is derived by passing to the limit x + h in (5.3) with allow- 
ance for the adhesion condition (6.1). 

As before, we determine the free parameter A in (6.9) by means of (6.2) after using 
(5.3) to exclude w from the right side of the latter. As a result 

h 

O = _  .~x dx--2•  (6 11) 
0 

Having solved problem (6.9)-(6.10) with arbitrary A, we can use Eq. (6.11) to find the relation 
Q = Q(A). Inversion of this relation gives us the sought relation A = A(Q). 

In accordance with this, we will show that for sufficiently large A Eqs. (6.9)-(6.10) 
have no solution. We make the substitutions ~ = x/h, I = Imh, ~2 = A=h 2, ~ = ~ - i, 

-- ~ h 3 1 2 A ~ l / n  A = -~-~ \ ~ ]  . I n t e g r a t i n g  (6 .9 )  from x to  1, we reduce ( 5 . 9 ) - ( 6 . 1 0 )  to  the  i n t e g r a l  equa t ion  

o ~ o 

where G(~, ~) = 2 _ is the Green's function of the operator -~"= 0 with the boundary 
--x,x~ 

conditions ~(i) = 0, ~'(0) = 0. Since ~(x) ~ 0, ~"(x) s 0, then ;(7) ;~<0)(1 - ;) = 

~0(I - x). Considering this inequality, we arrive at the estimate 

~o(2-~D 

I t  fo l lows  from t h i s  t h a t  the q u a n t i t y  A has an upper bound when ~2 < 2, s i n c e  A + 0 a t  

~ 0 ~ 0  and ~ 0 ~  . Thus, the  i n i t i a l  equa t ion  ( 6 . 9 ) : ( 6 . 1 0 )  has no s o ! u t i o n  a t ~  > A'-ma x. At 

A < ~nax, each p re s su re  g r a d i e n t  ( shear  s t r e s s  on the  wal l )  corresponds  to two flow r a t e s .  
I t  can be shown (see  Pa r t  2) t h a t  the  branch of  the  s o l u t i o n  on which the  p r e s s u r e  g r a d i e n t  
decreases with an increase in flow rate is ~stable. Figure 3 shows the dependence of the 
pressure gradient on fluid temperature on the channel axis. 

In the region of subcritical pressure gradients, system (5.2)-(5.3) can be solved by 
the small-parameter method. Let f = 1 (Newtonian fluid). We introduce the dimensionless 
quantities: m = w2h/Q, Pe = Q/2K, k = eh/m, B = A(sinh mk)/p 0, and we write system (5.2)- 
(5.3) as 

~ " + k ~ = - - P e k ~ ,  d~ ~ msh(m~) ~=__ ~ ~ .  (6.12) 
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In writing (6.12), we considered the symmetry of the flow (A = B). The parameter B is the 
shear stress on the channel wall, determined by the flow rate. We seek the solution of 
(6.12) in the form of series 

n:0 n~0 n~0 

For the zeroth approximation (isothermal Poiseuille flow) we have 

d%/dx ---- --Box, % = I, N 0 = 3, % = (3/2)(I --zD. 

For the first approximation, we obtain the linear system 

dm/dx --= --3m~1 -- /~lx,  ~ = --Peru0, 
1 j. 

q?l ( t )  = O, ~ ;  (0) ~ O, ~1 ( I )  = O, O) 1 (0) = O, ~1 ~ = O, 
0 

t h e  s o l u t i o n  o f  which we w i l l  r e p r e s e n t  as  

Pe -~ 
m [3t57 _ 3 5 ? ~  _ + 531,  % = - -  T [ 6 x  x - -  51,  ~01 = 5--~0-- 

24 
B1 = - -  ~ m P e .  

Now l e t  us  s ee  how f l o w s  o f  t h e  Newtonian  f l u i d  (n = 1) c o r r e s p o n d  to  s o l u t i o n  ( 5 . 6 ) ,  
which  a t  A = B, a = %m can be w r i t t e n  in  t he  form 

q) = b [ch (~mx)]-3"~, b = [3~2•176 -i- 3) ]l/m" (6.13) 

F u n c t i o n  ( 6 . 1 3 )  s a t i s f i e s  Eq. ( 6 . 9 )  and t he  f i r s t  b o u n d a r y  c o n d i t i o n  o f  ( 6 . 1 0 ) .  Re- 
q u i r i n g  t h a t  t he  s econd  and t h i r d  b o u n d a r y  c o n d i t i o n s  o f  ( 6 . 1 0 )  be s a t i s f i e d  a l o n g  w i t h  
Eq. ( 6 . 1 1 ) ,  we o b t a i n  

ch (~'mh) = [ 3k2•176 m (m + 3) ] (6.14) 

th 2(kmh)= 3m-- t .  3 ~ +  ]) '  (6.15) 

Q = 6x (m + 3) th ()~mh) -- 20• ( 6 . 1 6 )  

The f i r s t  e q u a t i o n ,  ( 6 . 1 4 ) ,  i s  used  t o  d e t e r m i n e  the  p a r a m e t e r  A, w h i l e  Eqs.  ( 5 . 1 5 ) - ( 5 . 1 5 )  
convey  t h e  c h a r a c t e r  o f  t h e  l i m i t a t i o n s  on t h e  f low p a r a m e t e r s  (~,  m, h ,  K, and Q) and has  
p h y s i c a l  s i g n i f i c a n c e  a t  m _> 1 / 3 .  
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EFFECT OF A GAS CAVITY ON A PRESSURE SURGE IN A HYDRAULIC LINE 

S. P. Aktershev, A. P. Petrov, and A. V. Fedorov UDC 532.595.2+532.595.7 

Situations in which gas-filled cavities are present in the fluid are encountered in 
the operation of various hydraulic systems. This is sometimes the result of the accidental 
admission of air into the line, while in other cases it is due to the presence of air cham- 
bers placed in the system to damp pulsations of the fluid. 

It is known that the presence of a macroscopic volume of gas in a hydraulic line can 
sometimes appreciably intensify pressure fluctuations occurring during transients [i-4]. 
For example, during the filling of a pipeline with fluid, a hydraulic shock 10 times greater 
than the pressure of the feed tank is realized [2]. The author of [3] studied the hydraulic 
shock which occurred when a pipeline provided with an air chamber and filled with a viscous 
fluid was rapidly connected to a tank under constant pressure. It was found that when the 
relative volume of air av < 10-2, the presence of a chamber designed to damp pressure surges 
leads to some increase in maximum pressure (by 30%). Only at av > 3"10-2 does the chamber 
alleviate hydraulic shocks. 

A numerical method was used in [4] to study the effect of the gas cavity on the pressure 
maximum for the case of instantaneous opening of a valve with a low hydraulic resistance. 
The investigation established the optimum gas volume at which the hydraulic-shock-induced 
increase in pressure would be maximal. This value is several times greater than the maxi- 
mum pressure in a pipeline without a gas cavity. If the volume of the gas cavity is large 
enough, it acts as a damper and lowers the maximum pressure. Thus, depending on the param- 
eters of the hydraulic system, a localized gas volume can either relieve pressure from a 
hydraulic shock or increase the pressure to a level which is dangerous for the system. 

It should be noted that the authors of [I-4] did not study the effect of the loading 
of a pipeline by pressure. However, this parameter is important because a slow "applica- 
tion" of the load (gradual opening of a valve, etc.) is the method usually employed to elimi- 
nate dangerous pressure surges during transients in hydraulic systems. 

In the present study, we experimentally and theoretically examine a transient involving 
the loading of a pipeline with pressure when the %ine has a gas cavity at the end. In con- 
trast to [3, 4], the characteristic period of pressure build-up at the inlet of the system 
corresponded to several traversals of the line by a wave. Thus, the hydraulic-shock char- 
acter of the transient was fairly weak. 

A diagram of the test unit is shown in Fig. [. One end of a steel pipe 5 with a 
length L = 2.3 m and a diameter d = 22 mmwas connected by means of an adapter 2 and electro- 
magnetic valve 1 to an air main at a pressure PI = 7"105 Pa. A steel cylinder 6 with a 
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